Pertumbuhan Ubi Jalar (*Ipomoea batatas.* L) Varietas Sari dan Beta 2 Akibat Aplikasi Kompos dan Pupuk KCl

Growth of Sweet Potato (Ipomoea batatas. L) Variety Sari and Beta 2 At Compost and KCl Fertilizer Aplication

Linda Tri Wira Astuti1), Hapsoh²⁾, Luthfi. A. M. Siregar²⁾

1) Sekolah Tinggi Penyuluhan Pertanian, Medan
2) Program Studi Agroekoteknologi, Fakultas Pertanian USU, Medan

Abstrak

Tujuan dari penelitian ini yaitu menganalisis pengaruh varietas unggul, kompos, dan dosis pupuk K terhadap pertumbuhan ubi jalar.Penelitian dilaksanakan di Kebun Percobaan Sekolah Tinggi Penyuluhan Pertanian Medan, Sumatera Utara pada bulan Januari 2010 sampai dengan Agustus 2010. Metode penelitian yang digunakan adalah rancangan petak-petak terpisah terdiri atas 3 (tiga) faktor dan 3 (tiga) ulangan. Petak utama adalah varietas ubi jalar (V) terdiri atas 2 taraf, yaitu: Varietas Sari dan Varietas Beta 2. Anak petak adalah Kompos terdiri atas 3 taraf, yaitu: Tanpa Kompos, kompos jerami 12 ton/ha dan kompos Tandan Kosong Kelapa Sawit (TKKS) 10 ton/ha. Anak-anak petak adalah Dosis Pupuk K terdiri atas 4 taraf, yaitu: 0 kg/ha KCl, 75 kg/ha KCl, 150 kg/ha KCl, dan 225 kg/ha KCl. Hasil penelitian menunjukkan pemberian 225 kg/ha KCl menghasilkan pertumbuhan yang paling baik. Kompos Tandan Kosong Kelapa Sawit (TKKS) dapat meningkatkan kadar C organik, dan Kdd dalam tanah. Kompos ini juga dapat meningkatkan bobot kering dan luas daun, tetapi tidak berbeda nyata dengan kompos jerami. Pertumbuhan, Varietas Sari lebih baik dibandingkan dengan Varietas Beta 2. Pertumbuhan yang terbaik adalah pada interaksi Varietas Sari, kompos Tandan Kosong Kelapa Sawit (TKKS) dan 150 kg/ha KCl.

Kata kunci: ubi jalar, kompos, pupuk K

Abstract

The objective of this research is to analysis of variety, compost and proportion of K fertilizer that better for sweet potato growth. The research were conducted in STPP Medan, Deli Serdang, North Sumatera on January 2010 until August 2010. The method of the research was split-split plot design with three (3) factor and three (3) replications. The main plot is variety of sweet potato consisted 2 levels: Variety Sari and Variety Beta 2. The sub-plot was compost consisted 3 levels: Without compost, straw compost of 12 ton/ha and Empty Fruit Bunch (EFB) of palm oil compost of 10 ton/ha. The sub sub-plot was proportion of kalium fertilizer consisted 4 levels: 0 kg/ha KCl, 75 kg/ha KCl, 150 kg/ha KCl, and 225 kg/ha KCl. Result showed that the best growth was obtained at 225 kg/ha KCl treatment. Compost of Empty Fruit Bunch (EFB) could improve level of C organic, and Kdd in land. This compost increase dry weight and wide leaf but not significant with straw compost. Growth of Variety Sari are more better than Beta 2. Combination between Variety Sari, compost Empty Fruit Bunch (EFB) and 150 kg/ha KCl will give the best growth..

Keywords: sweet potato, compost, K fertilizer

Pendahuluan

Tanaman ubi jalar merupakan salah satu tanaman pangan yang mempunyai keistimewaan ditinjau dari nilai gizinya dan merupakan sumber karbohidrat penting sehingga komoditas ini bisa menjadi salah satu alternatif untuk mendampingi beras menuju ketahanan pangan. Produktivitas ubi jalar di Sumatera Utara pada tahun 2008 sebesar 11,069 ton/ha (BPS Sumut, 2009), tetapi ini masih lebih rendah dari potensi hasil yang didapat di Jawa Barat (20 ton/ha), ditingkat penelitian. sedangkan memberikan hasil 25 - 40 ton/ha (Pusat Penelitian dan Pengembangan Tanaman Pangan, 1996). Hal ini mengindikasikan peluang besarnva peningkatan produktivitas ubi jalar di Sumatera Utara. Produktivitas berkorelasi dengan komponen pertumbuhan, jika pertumbuhan baik maka diharapkan meningkatkan dapat produktivitas ubi jalar. Pertumbuhan yang baik juga diperlukan bagi masyarakat yang membudidayakan ubi jalar untuk pakan ternak dimana hanya bagian atas tanaman yang digunakan sebagai bahan pakan ternak.

Ubi jalar menyukai sandy-loam soil dengan kadar bahan organik tinggi dan bermeable sub-soil karena tanah dengan kerapatan tinggi atau aerasi ielek menghambat pembentukan akar dan media yang gembur diperlukan untuk pertumbuhan umbi. Hasil penelitian menunjukkan bahwa dapat meningkatkan pupuk organik produktivitas tanah dan efisiensi pemupukan kebutuhan mengurangi pupuk, terutama pupuk K (Arafah, 2003) dan hasil penelitian tentang kalium, menyatakan bahwa pemupukan kalium dosis K₂O 90 kg/ha relatif menghasilkan pertumbuhan optimal dan hasil umbi maupun kadar pati lebih tinggi (Hariyanto, 2004).

Permasalahan dalam penelitian ini adalah belum diketahuinya varietas unggul, bahan kompos dan dosis pupuk K untuk pertumbuhan yang optimal oleh karena itu tujuan dari penelitian ini adalah mengukur dosis pupuk KCl, menentukan pengaruh kompos, menganalisis varietas unggul yang lebih baik dan menentukan dosis pupuk KCl, kompos dan penggunaaan varietas unggul yang dapat memberikan pertumbuhan yang terbaik.

Bahan dan Metode

Penelitian dilaksanakan di Kebun Percobaan Sekolah Tinggi Penyuluhan Pertanian Medan, Propinsi Sumatera Utara. Pada ketinggian tempat ± 27 m di atas permukaan laut. Penelitian dilakukan pada bulan Januari 2010 sampai dengan Agustus 2010.

Bahan-bahan yang digunakan adalah stek pucuk ubi jalar varietas sari dan beta 2, jerami padi, Tandan Kosong Kelapa Sawit (TKKS), dekomposer *Trichoderma* yang berasal dari Balai Pengembangan Proteksi Tanaman Perkebunan Sumatera Utara Medan, pupuk Urea, SP-36, KCl, air, herbisida, fungisida, insektisida, air, dan bahan-bahan serta alat-alat lain yang mendukung penelitian.

Penelitian dimulai dengan pembuatan kompos jerami dan TKKS dengan dekomposer Trichoderma. Selanjutnya kompos tersebut dianalisis kandungan haranya. Kemudian dilakukan penanaman beberapa varietas ubi jalar dengan aplikasi pupuk kompos dan dosis pupuk K yang dilaksanakan di lapangan. Sebelum ditanami, tanah tempat penelitian diuji komposit untuk mengetahui kadar haranya dan diuji lagi setelah pupuk kompos ditebar dan diinkubasi selama 10 hari. Pada akhir penelitian tanah kembali diuji kadar haranya.

Penelitian lapangan dilakukan dengan menggunakan rancangan petak-petak terpisah (split-split plot design) terdiri atas 3 faktor yaitu 2 x 3 x 4 diulang sebanyak 3 kali. Faktor pertama sebagai petak utama adalah varietas ubi jalar (V) terdiri atas 2 taraf, yaitu : V_1 = Varietas Sari dan V_2 = Varietas Beta 2, Faktor kedua sebagai anak petak adalah Kompos Jerami Padi dan Kompos TKKS (A) terdiri atas 3 taraf, yaitu : A₀ = Tanpa Kompos; A₁ = kompos jerami 12 ton/ha (setara 12 kg/plot) dan A_2 = kompos TKKS 10 ton/ha (setara 10 kg/plot), Faktor ketiga sebagai anak-anak petak adalah Dosis Pupuk K (K) terdiri atas 4 taraf, yaitu : $K_0 = 0$ kg/ha KCl; $K_1 = 75$ kg/ha KCl (setara 75 g/plot); $K_2 = 150$ kg/ha KCl (setara 150 g/plot) dan $K_3 = 225$ kg/ha KCl (setara 225 g/plot)

Dengan demikian diperoleh 24 kombinasi perlakuan dan setiap kombinasi diulang sebanyak 3 kali. Jumlah plot percobaan adalah 72 plot dengan ukuran guludan 70 cm dan tinggi 40 cm, jarak antar guludan 100 cm dan panjang guludan 2,5 m. Jarak tanam adalah 100 x 25 cm, dalam 1 plot terdapat 40 tanaman. Jumlah sampel per plot 3 batang dan 3 tanaman destruktif setiap pengamatan. Data hasil pengamatan dianalisa dengan uji F, apabila dalam uji statistik data diperoleh hasil signifikan maka pengujian dilanjutkan dengan uji DMRT (Duncan's Multiple Range Test)

Hasil dan pembahasan

Pertumbuhan ubi jalar pada penelitian ini menunjukkan respons yang berbeda-beda dari dua varietas perlakuan kompos dan pemberian pupuk K serta interaksinya. Panjang sulur, bobot kering dan luas daun, merupakan komponen pertumbuhan yang memberikan dampak terhadap produksi dikaitkan dengan serapan K pada daun dan kadar C organik dalam tanah. Data hasil penelitian, analisis sidik ragam dan uji lanjutannya untuk setiap peubah amatan dijelaskan pada uraian di bawah ini.

Panjang Sulur

Dari hasil analisis sidik ragam diperoleh bahwa perlakuan varietas (V) memberikan perbedaan nyata pada umur 6, 8 dan 10 MST dan perlakuan kompos (A) berbeda nyata pada umur 8 MST. Pengaruh perlakuan lainnya tidak memberikan perbedaan pada semua umur pengamatan. Perbedaan panjang sulur ubi jalar akibat perlakuan varietas dan kompos (VxA) yang nyata disajikan pada Tabel 1.

Tabel 1. Panjang Sulur (cm) Ubi Jalar Akibat Interaksi Perlakuan Varietas dan Kompos pada Umur 8 MST.

	O IVIOI.		
	Varietas	Varietas	Rataan A
	Sari (V ₁)	Beta 2	
		(V_2)	
Tanpa			
Kompos			
(A_0)	226,23	151,57	188,90a
Kompos			
Jerami			
(A_1)	220,13	142,75	181,44aab
Kompos			
TKKS			
(A_2)	220,88	123,57	172,22b
Rataan V	222,41a	139,30b	•

Keterangan : Angka yang diikuti huruf yang tidak sama pada kolom atau baris yang sama, menunjukkan berbeda nyata pada taraf 5% berdasarkan Uji Jarak Duncan.

Berdasarkan Tabel 1 di atas, dapat dilihat bahwa panjang sulur ubi jalar nyata lebih panjang pada Varietas Sari (V₁) dibandingkan Varietas Beta 2 (V₂). Perlakuan kompos (A) menyebabkan panjang sulur ubi jalar nyata lebih panjang pada tanaman yang tidak diberi kompos (A₀) dibandingkan dengan yang diberi kompos TKKS (A₂). Sedangkan pada perlakuan kompos jerami (A₁) tidak ada perbedaan panjang sulur dengan A₀ dan A₂.

Bobot Kering Brangkasan

Dari hasil analisis sidik ragam diperoleh bahwa perlakuan varietas (V) memberikan perbedaan nyata pada umur 4, 6, 8 dan 10 MST, perlakuan kompos (A) berbeda nyata pada umur 10 MST dan perlakuan pupuk K (K) nyata pada umur 6, 8 dan 10 MST. Sedangkan interaksi yang berbeda nyata adalah perlakuan varietas dan pupuk K (VxK) pada umur 6, 8 dan 10 MST, perlakuan kompos (A) dan pupuk K (K) (AxK) pada umur 4, 6, 8 dan 10 MST dan perlakuan varietas (V), kompos (A) dan pupuk K (K) (VxAxK) pada umur 10 MST.

Perbedaan bobot kering brangkasan ubi jalar akibat perlakuan varietas dan pupuk K (VxK) disajikan pada Tabel 2 di bawah ini.

Tabel 2. Bobot Kering Brangkasan (g) Ubi Jalar Akibat Interaksi Perlakuan Varietas dan Pupuk K pada Umur 10 MST.

	Varietas	Varietas	Rataan
	Sari (V ₁)	Beta 2 (V_2)	K
0 kg/ha KCl			
(K0)	51.51c	33.42e	42.47c
75 kg/ha KCl			
(K1)	61.78b	40.36d	51.07b
150 kg/ha KCl			
(K2)	73.25a	50.97c	62.11a
225 kg/ha KCl			
(K3)	65.68b	55.66c	60.67a
Rataan V	63.06a	45.10b	•

Keterangan : Angka yang diikuti huruf yang tidak sama, menunjukkan berbeda nyata pada taraf 5% berdasarkan Uji Jarak Duncan.

Dari Tabel 2, dapat dilihat bahwa bobot kering brangkasan nyata lebih besar pada Varietas Sari (V₁) dibandingkan dengan Varietas Beta 2 (V₂). Perlakuan pupuk K (K) antara perlakuan 150 kg/ha KCl (K₂) dan 225 kg/ha KCl (K₃) bobot kering brangkasan tidak berbeda nyata, namun berbeda nyata dengan perlakuan 75 kg/ha KCl (K₁) dan

tanpa pupuk K (K_0). Sedangkan interaksi perlakuan Varietas dan Pupuk K (VxK) memberikan perbedaan yang nyata terhadap bobot kering brangkasan ubi jalar. Interaksi Varietas Sari dan pemberian 150 kg/ha KCl (V_1K_2) memiliki bobot kering brangkasan terbesar dan terendah pada Varietas Beta 2 yang tidak diberi pupuk KCl (V_2K_0) pada umur 10 MST.

Perbedaan bobot kering brangkasan ubi jalar akibat perlakuan kompos dan pupuk K (AxK) disajikan pada Tabel 3.

Dari Tabel 3, dapat dilihat bahwa perlakuan kompos jerami (A₁) dan TKKS (A₂) tidak menunjukkan perbedaan yang tidak nyata tetapi berbeda nyata dengan perlakuan tanpa kompos (A₀). Sedangkan interaksi perlakuan Kompos dan Pupuk K (AxK) memberikan perbedaan yang nyata terhadap bobot kering brangkasan ubi jalar. Interaksi kompos TKKS dan pemberian 150 kg/ha KCl (A₂K₂) memiliki bobot kering brangkasan terbesar dan terendah perlakuan tanpa kompos dan pupuk K (A₀K₀) pada umur 10 MST.

Perbedaan bobot kering brangkasan ubi jalar akibat perlakuan varietas, kompos dan pupuk K (VxAxK) disajikan pada Tabel 4.

Tabel 3. Bobot Kering Brangkasan (g) Ubi Jalar Akibat Interaksi Perlakuan Kompos dan Pupuk K pada Umur 10 MST.

	Tanpa Kompos	Kompos Jerami	Kompos TKKS	Rataan K
	(A0)	(A1)	(A2)	
0 kg/ha KCl (K0)	39.57g	42.33g	45.50efg	42.47c
75 kg/ha KCl (K1)	43.35fg	52.27cde	57.59bc	51.07b
150 kg/ha KCl (K2)	53.28cd	56.87bcd	76.19a	62.11a
225 kg/ha KCl (K3)	50.32def	70.80a	60.90b	60.67a
Rataan A	46.63b	55.57a	60.04a	

Keterangan :Angka yang diikuti huruf yang tidak sama, menunjukkan berbeda nyata pada taraf 5% berdasarkan Uji Jarak Duncan.

Tabel 4. Bobot Kering Brangkasan (g) Ubi Jalar Akibat Interaksi Perlakuan Varietas, Kompos dan Pupuk K pada Umur 10 MST.

		Tanpa Kompos	Kompos	Kompos	Rataan K
		(A0)	Jerami	TKKS	
			(A1)	(A2)	
Varietas Sari	0 kg/ha KCl (K0)	47.98efg	51.90 def	54.63def	51.51
(V1)	75 kg/ha KCl (K1)	49.83d-g	64.62bc	70.90b	61.78
	150 kg/ha KCl (K2)	57.29cde	69.09b	93.38a	73.25
	225 kg/ha KCl (K3)	54.04 def	71.99b	71.00b	65.68
	Rataan A	52.29	64.40	72.48	
Varietas Beta 2	0 kg/ha KCl (K0)	31.15i	32.76i	36.36hi	33.42
(V2)	75 kg/ha KCl (K1)	36.87hi	39.93ghi	44.27gh	40.36
	150 kg/ha KCl (K2)	49.27d-g	44.65fgh	58.99cd	50.97
	225 kg/ha KCl (K3)	46.59fgh	69.60b	50.79 def	55.66
	Rataan A	40.97	46.74	47.61	

Keterangan : Angka yang diikuti huruf yang tidak sama, menunjukkan berbeda nyata pada taraf 5% berdasarkan Uji Jarak Duncan.

Dari Tabel 4, dapat dilihat bahwa interaksi perlakuan Varietas, Kompos dan Pupuk K (VxAxK) memberikan perbedaan yang nyata terhadap bobot kering brangkasan ubi jalar. Pada Varietas Sari, interaksi kompos TKKS dan pemberian 150 kg/ha KCl $(V_1A_2K_2)$ memiliki bobot kering brangkasan terbesar dan terendah perlakuan tanpa kompos dan pupuk K (V₁A₀K₀) pada umur 10 MST. Sedangkan pada Varietas Beta 2, interaksi kompos jerami dan pemberian 225 kg/ha KCl (V₂A₁K₃) memiliki bobot kering brangkasan terbesar terendah perlakuan tanpa kompos dan pupuk K $(V_2A_0K_0)$ pada umur 10 MST. Jika dibandingkan kedua varietas maka bobot kering brangkasan terbesar adalah pada perlakuan Varietas Sari, interaksi kompos TKKS dan pemberian 150 kg/ha KCl $(V_1A_2K_2)$ dan terendah pada perlakuan Varietas Beta 2 tanpa kompos dan pupuk K $(V_2A_0K_0)$.

Luas daun

Dari hasil analisis sidik ragam diperoleh bahwa perlakuan varietas (V) memberikan perbedaan nyata pada umur 4, 6, 8 dan 10 MST, perlakuan kompos (A) berbeda nyata pada umur 4, 6, 8 dan 10 MST dan perlakuan pupuk K (K) nyata pada umur 6, 8 dan 10 MST. Sedangkan interaksi yang berbeda nyata adalah perlakuan varietas dan pupuk K (VxK) pada umur 6, 8 dan 10 MST, perlakuan kompos (A) dan pupuk K (K) (AxK) pada umur 4, 6, 8 dan 10 MST dan perlakuan varietas (V), kompos (A) dan pupuk K (K) (VxAxK) pada umur 6, 8 dan 10 MST.

Tabel 5. Luas Daun (cm²) Ubi Jalar Akibat Interaksi Perlakuan Varietas dan Pupuk K pada Umur 10 MST.

	Varietas Sari	Varietas Beta 2	Rataan K
	(V_1)	(V_2)	
0 kg/ha KCl (K0)	1912.79d	970.69f	1441.74d
75 kg/ha KCl (K1)	2123.38bc	1159.81e	1641.59c
150 kg/ha KCl (K2)	2628.99a	1893.72d	2261.35a
225 kg/ha KCl (K3)	2266.06b	1992.25cd	2129.16b
Rataan V	2232.80a	1504.12b	

Keterangan : Angka yang diikuti huruf yang tidak sama, menunjukkan berbeda nyata pada taraf 5% berdasarkan Uji Jarak Duncan.

Tabel 6. Luas Daun (cm²) Ubi Jalar Akibat Interaksi Perlakuan Kompos dan Pupuk K pada Umur 10 MST.

	Tanpa Kompos	Kompos Jerami	Kompos TKKS	Rataan K
	(A0)	(A1)	(A2)	
0 kg/ha KCl (K0)	1420.73fg	1540.29efg	1364.19g	1441.74d
75 kg/ha KCl (K1)	1609.58ef	1643.27ef	1671.93de	1641.593c
150 kg/ha KCl (K2)	2011.89bc	2123.96b	2648.21a	2261.353a
225 kg/ha KCl (K3)	1883.03cd	2483.77a	2020.68bc	2129.159b
Rataan A	1731.31b	1947.82a	1926.25a	

Keterangan : Angka yang diikuti huruf yang tidak sama, menunjukkan berbeda nyata pada taraf 5% berdasarkan Uji Jarak Duncan.

Perbedaan luas daun ubi jalar akibat perlakuan varietas dan pupuk K (VxK) disajikan pada Tabel 5.

Dari Tabel 5, diketahui bahwa luas daun nyata lebih besar pada Varietas Sari (V₁) dibandingkan dengan Varietas Beta 2 (V₂) dan terdapat perbedaan nyata tiap perlakuan pupuk K (K) yang diuji dimana perlakuan 150 kg/ha KCl (K₂) memiliki luas daun terluas. Sedangkan interaksi perlakuan Varietas dan Pupuk K (VxK) memberikan perbedaan yang nyata terhadap luas daun ubi jalar. Interaksi Varietas Sari dan pemberian 150 kg/ha KCl (V₁K₂) memiliki luas daun terbesar dan terendah pada Varietas Beta 2 yang tidak diberi pupuk KCl (V₂K₀) pada umur 10 MST.

Perbedaan luas daun ubi jalar akibat perlakuan kompos dan pupuk K (AxK) disajikan pada Tabel 6. Dari Tabel 6, dapat dilihat bahwa perlakuan kompos jerami (A₁) TKKS (A_2) tidak menunjukkan perbedaan yang tidak nyata tetapi berbeda nyata terhadap luas daun dengan perlakuan tanpa kompos (A₀). Sedangkan interaksi perlakuan Kompos dan Pupuk K (AxK) memberikan perbedaan yang nyata terhadap luas daun ubi jalar. Interaksi kompos TKKS dan pemberian 150 kg/ha KCl (A₂K₂) memiliki luas daun terbesar dan terendah pada perlakuan kompos TKKS dan tanpa pupuk K (A_2K_0) pada umur 10 MST.

Perbedaan luas daun ubi jalar akibat perlakuan varietas, kompos dan pupuk K (VxAxK) disajikan pada Tabel 7.

Tabel 7. Luas Daun (cm²) Ubi Jalar Akibat Interaksi Perlakuan Varietas, Kompos dan Pupuk K pada Umur 10 MST.

		Tanpa	Kompos	Kompos	Rataan K
		Kompos	Jerami	TKKS	
		(A0)	(A1)	(A2)	
Varietas Sari	0 kg/ha KCl (K0)	1951.34f-i	2045.55e-h	1741.47h-k	1912.79
(V1)	75 kg/ha KCl (K1)	1956.08f-i	2024.36e-i	2389.69bcd	2123.38
	150 kg/ha KCl (K2)	2307.19cde	2598.04b	2981.75a	2628.99
	225 kg/ha KCl (K3)	2152.50d-g	2448.51bcd	2197.18def	2266.06
	Rataan A	2091.78	2279.12	2327.52	
Varietas Beta 2	0 kg/ha KCl (K0)	890.13m	1035.04lm	986.92lm	970.69
(V2)	75 kg/ha KCl (K1)	1263.071	1262.181	954.17lm	1159.81
	150 kg/ha KCl (K2)	1716.59ijk	1649.89jk	2314.67b-e	1893.72
	225 kg/ha KCl (K3)	1613.55k	2519.02bc	1844.19g-k	1992.25
	Rataan A	1370.83	1616.53	1524.99	

Keterangan : Angka yang diikuti huruf yang tidak sama, menunjukkan berbeda nyata pada taraf 5% berdasarkan Uji Jarak Duncan.

Berdasarkan Tabel 7. diketahui bahwa interaksi perlakuan Varietas, Kompos dan Pupuk K (VxAxK) memberikan perbedaan yang nyata terhadap luas daun ubi jalar. Pada Varietas Sari, interaksi kompos TKKS dan pemberian 150 kg/ha KCl (V₁A₂K₂) memiliki luas daun terbesar dan terendah perlakuan kompos TKKS dan tanpa pupuk K (V₁A₂K₀) pada umur 10 MST. Sedangkan pada Varietas Beta 2, interaksi kompos jerami dan pemberian 225 kg/ha KCl (V₂A₁K₃) memiliki luas daun terbesar dan terendah pada perlakuan tanpa kompos dan pupuk K (V₂A₀K₀) pada umur 10 MST. diketahui, jika dibandingkan kedua varietas maka luas daun terbesar adalah pada perlakuan Varietas Sari, interaksi kompos TKKS dan pemberian 150 kg/ha KCl (V₁A₂K₂) dan terendah pada perlakuan Varietas Beta 2 tanpa kompos dan pupuk K ($V_2A_0K_0$).

Serapan hara K pada jaringan tanaman

Dari hasil analisis sidik ragam diperoleh bahwa perlakuan varietas (V) dan

pupuk K (K) memberikan perbedaan nyata. Sedangkan interaksi yang berbeda nyata hanya perlakuan kompos dan pupuk K (AxK).

Perbedaan serapan hara K pada jaringan tanaman ubi jalar akibat perlakuan kompos dan pupuk K (AxK) disajikan pada Tabel 8.

Dari Tabel 8 diketahui bahwa interaksi perlakuan kompos dan Pupuk K (AxK) memberikan perbedaan yang nyata terhadap serapan K pada daun ubi jalar. Interaksi kompos TKKS dan 150 kg/ha pupuk KCl (A₂K₂) memiliki serapan K terbesar dan terendah pada tanaman tanpa kompos dan pupuk KCl (A₀K₀) pada pengamatan umur 10 MST.

Kadar C-organik Tanah

Perbedaan kadar C organik dalam tanah akibat perlakuan kompos dan pupuk K (AxK) disajikan pada Tabel 9.

Tabel 8. Serapan K dalam Jaringan Daun (mg) Ubi Jalar Akibat Interaksi Perlakuan Kompos dan Pupuk K pada Umur 10 MST.

1 1				
	Tanpa Kompos	Kompos Jerami	Kompos TKKS	Rataan K
	(A0)	(A1)	(A2)	
0 kg/ha KCl (K0)	1.05e	1.19de	1.28 de	1.17c
75 kg/ha KCl (K1)	1.22 de	1.50 de	1.66cd	1.46b
150 kg/ha KCl (K2)	1.47 de	1.50 de	2.92a	1.96a
225 kg/ha KCl (K3)	1.48 de	2.22b	2.03bc	1.91a
Rataan A	1 30	1.60	1 97	

Keterangan : Angka yang diikuti huruf yang tidak sama, menunjukkan berbeda nyata pada taraf 5% berdasarkan Uji Jarak Duncan.

Tabel 9. Kadar C organik (%) dalam Tanah Akibat Interaksi Perlakuan Kompos dan Pupuk K pada Saat Panen.

pada caat rancii.				
	Tanpa Kompos	Kompos Jerami	Kompos TKKS	Rataan K
	(A0)	(A1)	(A2)	
0 kg/ha KCl (K0)	0.97j	1.02i	1.05i	1.01d
75 kg/ha KCl (K1)	1.21h	1.37g	1.50f	1.36c
150 kg/ha KCl (K2)	1.47f	1.62e	1.77c	1.62b
225 kg/ha KCl (K3)	1.74d	1.98b	2.11a	1.95a
Rataan A	1.35c	1.50b	1.61a	

Keterangan : Angka yang diikuti huruf yang tidak sama, menunjukkan berbeda nyata pada taraf 5% berdasarkan Uji Jarak Duncan.

Dari Tabel 9, diketahui bahwa kadar C organik dalam tanah nyata lebih banyak pada tanah yang diberi pupuk KCl sebanyak 225 kg/ha (K₃) dibandingkan dengan yang diberi 150 kg/ha KCl (K₂), 75 kg/ha KCl (K₁) dan tidak diberi pupuk K (K₀). Interaksi perlakuan kompos dan pupuk K (AxK) memberikan perbedaan yang nyata pada kadar C organik. Kadar terbesar pada perlakuan kompos TKKS dengan 225 kg/ha pupuk K (A₂K₃) dan terendah pada perlakuan tanpa kompos dan tanpa pupuk K (A₀K₀).

Pembahasan

Penelitian ini menguji respon pertumbuhan dari dua varietas unggul ubi jalar yaitu Varietas Sari dan Beta 2. Dari kedua varietas ini, terbukti bahwa pertumbuhan Varietas Sari (V₁) lebih baik dari Beta 2 (V₂). Baiknya pertumbuhan ditunjukkan dengan perbedaan yang nyata pada panjang sulur, berat kering tanaman dan luas daun.

daun berkorelasi positif Luas nyata dengan bobot kering tanaman. Semakin luas daun akan meningkatkan berat kering tanaman dan selanjutnya hasil tanaman bertambah. Hal ini sesuai dengan Suwardiono pernyataan (2003)mengemukakan bila terjadi peningkatan total luas daun, maka penerimaan cahaya matahari sebagai sumber utama dalam proses fotosintesis, akan meningkat. Dengan meningkatnya fotosintesa diikuti peningkatan respirasi, menyebabkan proses metabolisme berlangsung lebih baik dan mendukung pertumbuhan perkembangan tanaman. Peningkatan hasil fotosintesis di daun akan digunakan untuk membentuk penyusunan tanaman yaitu asam-asam amino, profirin, karbohidrat, nukleotida, lipid dan enzim, dengan demikian akan mempengaruhi bobot kering. Panjang sulur dan berat kering tanaman sebagai komponen pertumbuhan dapat digunakan sebagai salah satu indikator

kesuburan tanaman. Sulur yang panjang dan bobot kering tanaman yang tinggi akan menghasilkan umbi yang bagus. Hal ini sesuai dengan hasil penelitian Rahayuningsih, et al (1997) yang membuktikan bahwa bobot tajuk tertinggi pada klon ubi jalar menghasilkan umbi yang tinggi.

Aplikasi kompos berpengaruh terhadap perkembangan tanaman. Kompos menvebabkan bobot brangkasan pada minggu ke-10 lebih berat dibandingkan dengan perlakuan tanpa kompos tetapi tidak berbeda nyata dengan kompos jerami. Sedangkan luas daun akan lebih tinggi pada aplikasi kompos jerami dibandingkan perlakuan tanpa kompos tetapi tidak berbeda dengan aplikasi kompos TKKS pada 10 MST. Hasil penelitian juga menunjukkan bahwa tanaman yang tidak diberi kompos memiliki sulur yang paling panjang dibandingkan dengan tanaman yang diberi kompos TKKS tetapi tidak berbeda nyata dengan yang diberi kompos jerami.

Pemberian kompos jerami dan TKKS mengakibatkan perbedaan nyata dibandingkan yang tidak diberi kompos pada beberapa komponen pertumbuhan, sebab tanah yang kaya akan bahan organik relatif sedikit hara yang terfiksasi mineral tanah, sehingga yang tersedia untuk tanaman lebih besar (Rachman Sutanto, 2002).

Perlakuan pupuk KCl memberikan pengaruh yang berbeda nyata terhadap panjang sulur, bobot kering brangkasan, luas daun. Secara umum pemberian 225 kg/ha KCl (K₃) memberikan pertumbuhan lebih tinggi dari pemberian 75 kg/ha KCl (K₁) dan perlakuan tanpa pupuk KCl (K₀). Pada peubah amatan bobot kering brangkasan dan luas daun antara perlakuan 225 kg/ha KCl (K₃) dan 150 kg/ha KCl (K₂) tidak berbeda nyata. Howeler (2002) mengemukakan bahwa walaupun K bukan unsur dasar penyusun protein, karbohidrat atau lemak, tetapi K mempunyai peranan yang penting dalam

K metabolisme. menstimulir aktivitas fotosintesis sehingga meningkatkan luas daun dan berat kering brangkasan serta translokasi fotosintat ke organ penyimpanan. Arah aliran fotosintat selalu dari daerah penyediaan (sumber) ke tempat di mana fotosintat itu akan digunakan pertumbuhan atau untuk diubah menjadi bahan yang tak larut dan disimpan sebagai cadangan (Fitter dan Hay, 1991). Pada awal periode pertumbuhan bagian terbesar dari fotosintat diangkut ke arah bawah karena diperlukan sistem perakaran dan pembentukan pucuk. Setelah umbi terbentuk, distribusi fotosintat ke arah bawah jumlahnya berangsur-angsur hampir bersamaan meningkat pembentukan organ-organ fotosintesis.

Interaksi antara varietas dan kompos (VxA) tidak memberikan perbedaan yang nyata pada komponen pertumbuhan, tetapi nyata pada kadar C organik tanah, dimana interaksi Varietas Beta 2 dengan kompos TKKS (V₂A₂) yang memberikan nilai tertinggi sebesar 1,62%. Hal ini karena fungsi dari bahan organik untuk memperbaiki dan meningkatkan kesuburan, baik kimia, fisik maupun biologi tanah.

Pada perlakuan interaksi varietas dan pemupukan K (VxK), menyebabkan beberapa peubah amatan pertumbuhan yang berbeda nyata yaitu: bobot kering brangkasan dan luas daun. Untuk bobot kering brangkasan interaksi VxK berbeda nyata pada umur 6,8 dan 10 MST begitu juga dengan luas daun, dimana interaksi perlakuan varietas Sari dengan pemupukan 150 kg/ha KCl (V₁K₂) merupakan tanaman dengan bobot brangkasan dan luas daun terbesar diantara interaksi perlakuan yang lain. Respon tanaman terhadap pemberian K dipengaruhi oleh berbagai faktor diantaranya adalah varietas. Setiap varietas mempunyai sifat-sifat tertentu yang memungkinkan terjadinya perbedaan respon pemupukan antara varietas yang satu dengan varietas lainnya.

Interaksi kompos dan pupuk K (AxK) memberikan perbedaan nyata pada bobot kering brangkasan, luas daun. Bobot kering brangkasan dan luas daun pada umur 10 MST menunjukkan nilai yang tertinggi pada pemberian kompos TKKS dengan 150 kg/ha KCl (A₂K₂) dan tidak berbeda nyata dengan pemberian kompos jerami dengan 225 kg/ha KCl (A₁K₃). Respon tanaman terhadap pemberian K dipengaruhi oleh kandungan K dalam tanah dan bahan organik merupakan kunci utama dalam meningkatkan produktivitas tanah efisiensi pemupukan. Iadi untuk mendukung peningkatan bobot kering brangkasan dan luas daun, memerlukan kombinasi antara pemupukan dan pemberian bahan organik.

Interaksi kompos TKKS dengan 150 kg/ha KCl (A₂K₂) tidak berbeda nyata dengan pemberian kompos jerami dengan 225 kg/ha KCl (A₁K₃), menunjukkan bahwa kompos TKKS hanya memerlukan pupuk KCl sebanyak 150 kg/ha, dibandingkan dengan kompos jerami yang memerlukan pupuk KCl sebanyak 225 kg/ha untuk menghasilkan bobot kering dan luas daun yang tidak berbeda nyata. Hal kemungkinan karena berdasarkan analisis hara, kandungan K₂O dalam kompos TKKS lebih tinggi dibandingkan dengan kompos jerami sehingga untuk kompos jerami memerlukan pupuk KCl yang lebih tinggi dibandingkan dengan kompos TKKS.

Interaksi perlakuan varietas, dan pemupukan K (VxAxK) kompos memberikan perbedaan yang nyata pada peubah amatan bobot kering umur 10 MST, luas daun umur 6, 8 dan 10 MST. Interaksi perlakuan varietas Sari, pemberian kompos TKKS dan 150 kg/ha KCl $(V_1A_2K_2)$ memberikan nilai bobot kering brangkasan dan luas daun yang paling besar. Hara yang bertambah dengan penambahan kompos TKKS dan 150 kg/ha KCl adalah yang paling efisien dapat digunakan oleh varietas Sari meningkatkan untuk bobot kering brangkasan dan luas daun sehingga pertumbuhannya menjadi optimal.

Kesimpulan

Pertumbuhan ubi jalar yang paling baik pada pemberian 225 kg/ha KCl. Pemberian kompos dapat memperbaiki kesuburan tanah dibandingkan dengan tanah yang tidak diberi kompos, dimana pemberian kompos TKKS dapat meningkatkan kadar C organik dan Kdd dalam tanah. Perlakuan kompos TKKS ini juga dapat meningkatkan bobot kering dan luas daun, tetapi tidak berbeda nyata dengan kompos jerami. Pertumbuhan Varietas Sari lebih baik dibandingkan Varietas Beta 2.

Ucapan terima Kasih

Kami mengucapkan terima kasih kepada Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan Nasional, Republik Indonesia, atas pembiayan penelitian ini melalui Hibah Penelitian Strategis Nasional dengan Surat Perjanjian Nomor 2693/H5.1.R/KEU/SP2H/2010, tanggal 3 Mei 2010.

Daftar Pustaka

Arafah dan M. P. Sirappa. 2003. Kajian Penggunaan Jerami dan Pupuk N, P dan K pada Lahan Sawah Irigasi. Jurnal Ilmu Tanah dan Lingkungan. Vol 4(1) (2003).

- http://www.soil.faperta.ugm.ac.id. Diakses tanggal 17 November 2009.
- BPS Sumatera Utara. 2009. Berita Resmi Statistik. http://www.sumut.bps.go.id. Diakses tanggal 19 Desember 2009.
- Fitter. A. H., dan R. K. M. Hay. 1991. Fisiologi Lingkungan Tanaman. Terjemahan S. Andani dan E. D. Purla Yanti. Gajah Mada Universitas Press. Yogyakarta.
- Hariyanto, B. 2004. Pertumbuhan dan Hasil Tiga Varietas Ubi jalar pada Berbagai Dosis K di Tanah Regosol. Thesis. Program Pascasarjana. Universitas Gajah Mada. Yogyakarta. (Tidak dipublikasikan)
- Howeler, R.H. 2002. Cassava Mineral Nutrition and Fertilization. CIAT Regional Office in Asia. Department of Agriculture, Chatuchak, Bangkok, Thailand.
- Pusat Penelitian dan Pengembangan Pertanian. 1996. Deskripsi Varietas Unggul Palawija dan Umbi-umbian. Pusat penelitian dan Pengembangan Tanaman Pangan.
- Rachman, Susanto. 2002. Penerapan Pertanian Organik. Kanisius. Yogyakarta.
- Suwardjono. 2003. Pengaruh Beberapa Jenis Pupuk Kandang Terhadap Pertumbuhan dan Produksi Kacang Tanah. Jurnal Matematika. Sain Teknologi.

Linda Tri Wira Astuti, Hapsoh, Luthfi. A. M. Siregar: **Pertumbuhan Ubi Jalar Akibat Aplikasi Kompos dan Pupuk KCI**